Copied to
clipboard

?

G = C42.233D10order 320 = 26·5

53rd non-split extension by C42 of D10 acting via D10/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.233D10, (C4×D5)⋊6D4, C4.30(D4×D5), C20.59(C2×D4), (D5×C42)⋊8C2, C20⋊D423C2, D10.18(C2×D4), C4.4D418D5, D10⋊D437C2, Dic53(C4○D4), (C2×D4).168D10, C4.D2022C2, (C2×C20).76C23, (C2×Q8).134D10, C22⋊C4.70D10, C10.86(C22×D4), Dic5⋊Q819C2, Dic54D427C2, (C4×C20).182C22, (C2×C10).212C24, Dic5.120(C2×D4), C23.34(C22×D5), (D4×C10).150C22, (C2×D20).166C22, (C22×C10).42C23, C54(C22.26C24), (Q8×C10).121C22, C22.233(C23×D5), D10⋊C4.58C22, (C2×Dic5).259C23, (C4×Dic5).338C22, C10.D4.47C22, (C22×D5).222C23, (C2×Dic10).179C22, (C22×Dic5).137C22, C2.59(C2×D4×D5), C2.71(D5×C4○D4), (C2×Q82D5)⋊9C2, (C5×C4.4D4)⋊6C2, (C2×D42D5)⋊18C2, C10.183(C2×C4○D4), (C2×C4×D5).127C22, (C2×C4).298(C22×D5), (C2×C5⋊D4).55C22, (C5×C22⋊C4).59C22, SmallGroup(320,1340)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.233D10
C1C5C10C2×C10C2×Dic5C2×C4×D5D5×C42 — C42.233D10
C5C2×C10 — C42.233D10

Subgroups: 1166 in 310 conjugacy classes, 107 normal (29 characteristic)
C1, C2, C2 [×2], C2 [×6], C4 [×2], C4 [×12], C22, C22 [×16], C5, C2×C4, C2×C4 [×4], C2×C4 [×21], D4 [×20], Q8 [×4], C23 [×2], C23 [×3], D5 [×4], C10, C10 [×2], C10 [×2], C42, C42 [×3], C22⋊C4 [×4], C22⋊C4 [×4], C4⋊C4 [×4], C22×C4 [×7], C2×D4, C2×D4 [×9], C2×Q8, C2×Q8, C4○D4 [×8], Dic5 [×6], Dic5 [×2], C20 [×2], C20 [×4], D10 [×2], D10 [×8], C2×C10, C2×C10 [×6], C2×C42, C4×D4 [×4], C4⋊D4 [×4], C4.4D4, C4.4D4, C41D4, C4⋊Q8, C2×C4○D4 [×2], Dic10 [×2], C4×D5 [×4], C4×D5 [×8], D20 [×6], C2×Dic5, C2×Dic5 [×4], C2×Dic5 [×4], C5⋊D4 [×12], C2×C20, C2×C20 [×4], C5×D4 [×2], C5×Q8 [×2], C22×D5, C22×D5 [×2], C22×C10 [×2], C22.26C24, C4×Dic5, C4×Dic5 [×2], C10.D4 [×4], D10⋊C4 [×4], C4×C20, C5×C22⋊C4 [×4], C2×Dic10, C2×C4×D5, C2×C4×D5 [×4], C2×D20, C2×D20 [×2], D42D5 [×4], Q82D5 [×4], C22×Dic5 [×2], C2×C5⋊D4 [×6], D4×C10, Q8×C10, D5×C42, C4.D20, Dic54D4 [×4], D10⋊D4 [×4], C20⋊D4, Dic5⋊Q8, C5×C4.4D4, C2×D42D5, C2×Q82D5, C42.233D10

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C4○D4 [×4], C24, D10 [×7], C22×D4, C2×C4○D4 [×2], C22×D5 [×7], C22.26C24, D4×D5 [×2], C23×D5, C2×D4×D5, D5×C4○D4 [×2], C42.233D10

Generators and relations
 G = < a,b,c,d | a4=b4=c10=d2=1, ab=ba, cac-1=dad=ab2, cbc-1=dbd=a2b, dcd=a2c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 135 33 108)(2 114 34 84)(3 137 35 110)(4 116 36 86)(5 139 37 102)(6 118 38 88)(7 131 39 104)(8 120 40 90)(9 133 31 106)(10 112 32 82)(11 119 41 89)(12 132 42 105)(13 111 43 81)(14 134 44 107)(15 113 45 83)(16 136 46 109)(17 115 47 85)(18 138 48 101)(19 117 49 87)(20 140 50 103)(21 95 143 55)(22 79 144 64)(23 97 145 57)(24 71 146 66)(25 99 147 59)(26 73 148 68)(27 91 149 51)(28 75 150 70)(29 93 141 53)(30 77 142 62)(52 155 92 122)(54 157 94 124)(56 159 96 126)(58 151 98 128)(60 153 100 130)(61 156 76 123)(63 158 78 125)(65 160 80 127)(67 152 72 129)(69 154 74 121)
(1 100 15 73)(2 51 16 69)(3 92 17 75)(4 53 18 61)(5 94 19 77)(6 55 20 63)(7 96 11 79)(8 57 12 65)(9 98 13 71)(10 59 14 67)(21 140 158 118)(22 104 159 89)(23 132 160 120)(24 106 151 81)(25 134 152 112)(26 108 153 83)(27 136 154 114)(28 110 155 85)(29 138 156 116)(30 102 157 87)(31 58 43 66)(32 99 44 72)(33 60 45 68)(34 91 46 74)(35 52 47 70)(36 93 48 76)(37 54 49 62)(38 95 50 78)(39 56 41 64)(40 97 42 80)(82 147 107 129)(84 149 109 121)(86 141 101 123)(88 143 103 125)(90 145 105 127)(111 146 133 128)(113 148 135 130)(115 150 137 122)(117 142 139 124)(119 144 131 126)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 124)(2 156)(3 122)(4 154)(5 130)(6 152)(7 128)(8 160)(9 126)(10 158)(11 146)(12 23)(13 144)(14 21)(15 142)(16 29)(17 150)(18 27)(19 148)(20 25)(22 43)(24 41)(26 49)(28 47)(30 45)(31 159)(32 125)(33 157)(34 123)(35 155)(36 121)(37 153)(38 129)(39 151)(40 127)(42 145)(44 143)(46 141)(48 149)(50 147)(51 86)(52 115)(53 84)(54 113)(55 82)(56 111)(57 90)(58 119)(59 88)(60 117)(61 109)(62 135)(63 107)(64 133)(65 105)(66 131)(67 103)(68 139)(69 101)(70 137)(71 104)(72 140)(73 102)(74 138)(75 110)(76 136)(77 108)(78 134)(79 106)(80 132)(81 96)(83 94)(85 92)(87 100)(89 98)(91 116)(93 114)(95 112)(97 120)(99 118)

G:=sub<Sym(160)| (1,135,33,108)(2,114,34,84)(3,137,35,110)(4,116,36,86)(5,139,37,102)(6,118,38,88)(7,131,39,104)(8,120,40,90)(9,133,31,106)(10,112,32,82)(11,119,41,89)(12,132,42,105)(13,111,43,81)(14,134,44,107)(15,113,45,83)(16,136,46,109)(17,115,47,85)(18,138,48,101)(19,117,49,87)(20,140,50,103)(21,95,143,55)(22,79,144,64)(23,97,145,57)(24,71,146,66)(25,99,147,59)(26,73,148,68)(27,91,149,51)(28,75,150,70)(29,93,141,53)(30,77,142,62)(52,155,92,122)(54,157,94,124)(56,159,96,126)(58,151,98,128)(60,153,100,130)(61,156,76,123)(63,158,78,125)(65,160,80,127)(67,152,72,129)(69,154,74,121), (1,100,15,73)(2,51,16,69)(3,92,17,75)(4,53,18,61)(5,94,19,77)(6,55,20,63)(7,96,11,79)(8,57,12,65)(9,98,13,71)(10,59,14,67)(21,140,158,118)(22,104,159,89)(23,132,160,120)(24,106,151,81)(25,134,152,112)(26,108,153,83)(27,136,154,114)(28,110,155,85)(29,138,156,116)(30,102,157,87)(31,58,43,66)(32,99,44,72)(33,60,45,68)(34,91,46,74)(35,52,47,70)(36,93,48,76)(37,54,49,62)(38,95,50,78)(39,56,41,64)(40,97,42,80)(82,147,107,129)(84,149,109,121)(86,141,101,123)(88,143,103,125)(90,145,105,127)(111,146,133,128)(113,148,135,130)(115,150,137,122)(117,142,139,124)(119,144,131,126), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,124)(2,156)(3,122)(4,154)(5,130)(6,152)(7,128)(8,160)(9,126)(10,158)(11,146)(12,23)(13,144)(14,21)(15,142)(16,29)(17,150)(18,27)(19,148)(20,25)(22,43)(24,41)(26,49)(28,47)(30,45)(31,159)(32,125)(33,157)(34,123)(35,155)(36,121)(37,153)(38,129)(39,151)(40,127)(42,145)(44,143)(46,141)(48,149)(50,147)(51,86)(52,115)(53,84)(54,113)(55,82)(56,111)(57,90)(58,119)(59,88)(60,117)(61,109)(62,135)(63,107)(64,133)(65,105)(66,131)(67,103)(68,139)(69,101)(70,137)(71,104)(72,140)(73,102)(74,138)(75,110)(76,136)(77,108)(78,134)(79,106)(80,132)(81,96)(83,94)(85,92)(87,100)(89,98)(91,116)(93,114)(95,112)(97,120)(99,118)>;

G:=Group( (1,135,33,108)(2,114,34,84)(3,137,35,110)(4,116,36,86)(5,139,37,102)(6,118,38,88)(7,131,39,104)(8,120,40,90)(9,133,31,106)(10,112,32,82)(11,119,41,89)(12,132,42,105)(13,111,43,81)(14,134,44,107)(15,113,45,83)(16,136,46,109)(17,115,47,85)(18,138,48,101)(19,117,49,87)(20,140,50,103)(21,95,143,55)(22,79,144,64)(23,97,145,57)(24,71,146,66)(25,99,147,59)(26,73,148,68)(27,91,149,51)(28,75,150,70)(29,93,141,53)(30,77,142,62)(52,155,92,122)(54,157,94,124)(56,159,96,126)(58,151,98,128)(60,153,100,130)(61,156,76,123)(63,158,78,125)(65,160,80,127)(67,152,72,129)(69,154,74,121), (1,100,15,73)(2,51,16,69)(3,92,17,75)(4,53,18,61)(5,94,19,77)(6,55,20,63)(7,96,11,79)(8,57,12,65)(9,98,13,71)(10,59,14,67)(21,140,158,118)(22,104,159,89)(23,132,160,120)(24,106,151,81)(25,134,152,112)(26,108,153,83)(27,136,154,114)(28,110,155,85)(29,138,156,116)(30,102,157,87)(31,58,43,66)(32,99,44,72)(33,60,45,68)(34,91,46,74)(35,52,47,70)(36,93,48,76)(37,54,49,62)(38,95,50,78)(39,56,41,64)(40,97,42,80)(82,147,107,129)(84,149,109,121)(86,141,101,123)(88,143,103,125)(90,145,105,127)(111,146,133,128)(113,148,135,130)(115,150,137,122)(117,142,139,124)(119,144,131,126), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,124)(2,156)(3,122)(4,154)(5,130)(6,152)(7,128)(8,160)(9,126)(10,158)(11,146)(12,23)(13,144)(14,21)(15,142)(16,29)(17,150)(18,27)(19,148)(20,25)(22,43)(24,41)(26,49)(28,47)(30,45)(31,159)(32,125)(33,157)(34,123)(35,155)(36,121)(37,153)(38,129)(39,151)(40,127)(42,145)(44,143)(46,141)(48,149)(50,147)(51,86)(52,115)(53,84)(54,113)(55,82)(56,111)(57,90)(58,119)(59,88)(60,117)(61,109)(62,135)(63,107)(64,133)(65,105)(66,131)(67,103)(68,139)(69,101)(70,137)(71,104)(72,140)(73,102)(74,138)(75,110)(76,136)(77,108)(78,134)(79,106)(80,132)(81,96)(83,94)(85,92)(87,100)(89,98)(91,116)(93,114)(95,112)(97,120)(99,118) );

G=PermutationGroup([(1,135,33,108),(2,114,34,84),(3,137,35,110),(4,116,36,86),(5,139,37,102),(6,118,38,88),(7,131,39,104),(8,120,40,90),(9,133,31,106),(10,112,32,82),(11,119,41,89),(12,132,42,105),(13,111,43,81),(14,134,44,107),(15,113,45,83),(16,136,46,109),(17,115,47,85),(18,138,48,101),(19,117,49,87),(20,140,50,103),(21,95,143,55),(22,79,144,64),(23,97,145,57),(24,71,146,66),(25,99,147,59),(26,73,148,68),(27,91,149,51),(28,75,150,70),(29,93,141,53),(30,77,142,62),(52,155,92,122),(54,157,94,124),(56,159,96,126),(58,151,98,128),(60,153,100,130),(61,156,76,123),(63,158,78,125),(65,160,80,127),(67,152,72,129),(69,154,74,121)], [(1,100,15,73),(2,51,16,69),(3,92,17,75),(4,53,18,61),(5,94,19,77),(6,55,20,63),(7,96,11,79),(8,57,12,65),(9,98,13,71),(10,59,14,67),(21,140,158,118),(22,104,159,89),(23,132,160,120),(24,106,151,81),(25,134,152,112),(26,108,153,83),(27,136,154,114),(28,110,155,85),(29,138,156,116),(30,102,157,87),(31,58,43,66),(32,99,44,72),(33,60,45,68),(34,91,46,74),(35,52,47,70),(36,93,48,76),(37,54,49,62),(38,95,50,78),(39,56,41,64),(40,97,42,80),(82,147,107,129),(84,149,109,121),(86,141,101,123),(88,143,103,125),(90,145,105,127),(111,146,133,128),(113,148,135,130),(115,150,137,122),(117,142,139,124),(119,144,131,126)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,124),(2,156),(3,122),(4,154),(5,130),(6,152),(7,128),(8,160),(9,126),(10,158),(11,146),(12,23),(13,144),(14,21),(15,142),(16,29),(17,150),(18,27),(19,148),(20,25),(22,43),(24,41),(26,49),(28,47),(30,45),(31,159),(32,125),(33,157),(34,123),(35,155),(36,121),(37,153),(38,129),(39,151),(40,127),(42,145),(44,143),(46,141),(48,149),(50,147),(51,86),(52,115),(53,84),(54,113),(55,82),(56,111),(57,90),(58,119),(59,88),(60,117),(61,109),(62,135),(63,107),(64,133),(65,105),(66,131),(67,103),(68,139),(69,101),(70,137),(71,104),(72,140),(73,102),(74,138),(75,110),(76,136),(77,108),(78,134),(79,106),(80,132),(81,96),(83,94),(85,92),(87,100),(89,98),(91,116),(93,114),(95,112),(97,120),(99,118)])

Matrix representation G ⊆ GL6(𝔽41)

3200000
0320000
0040000
0004000
000014
00002040
,
9180000
32320000
0040000
0004000
00004037
0000211
,
100000
40400000
00343400
007100
00004037
000001
,
40390000
010000
007700
00403400
000010
00002040

G:=sub<GL(6,GF(41))| [32,0,0,0,0,0,0,32,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,20,0,0,0,0,4,40],[9,32,0,0,0,0,18,32,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,21,0,0,0,0,37,1],[1,40,0,0,0,0,0,40,0,0,0,0,0,0,34,7,0,0,0,0,34,1,0,0,0,0,0,0,40,0,0,0,0,0,37,1],[40,0,0,0,0,0,39,1,0,0,0,0,0,0,7,40,0,0,0,0,7,34,0,0,0,0,0,0,1,20,0,0,0,0,0,40] >;

56 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A···4F4G4H4I4J4K4L4M4N4O4P4Q4R5A5B10A···10F10G10H10I10J20A···20L20M20N20O20P
order12222222224···44444444444445510···101010101020···2020202020
size111144101020202···2445555101010102020222···288884···48888

56 irreducible representations

dim1111111111222222244
type+++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2D4D5C4○D4D10D10D10D10D4×D5D5×C4○D4
kernelC42.233D10D5×C42C4.D20Dic54D4D10⋊D4C20⋊D4Dic5⋊Q8C5×C4.4D4C2×D42D5C2×Q82D5C4×D5C4.4D4Dic5C42C22⋊C4C2×D4C2×Q8C4C2
# reps1114411111428282248

In GAP, Magma, Sage, TeX

C_4^2._{233}D_{10}
% in TeX

G:=Group("C4^2.233D10");
// GroupNames label

G:=SmallGroup(320,1340);
// by ID

G=gap.SmallGroup(320,1340);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,232,100,1123,346,297,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a*b^2,c*b*c^-1=d*b*d=a^2*b,d*c*d=a^2*c^-1>;
// generators/relations

׿
×
𝔽